Зрительный нерв: анатомия, строение и функции глазного нерва

Перекрест (хиазма)

Нерв, пройдя через костный канал клиновидной кости, переходит в особое образование – хиазму, в которой нити перемешиваются и частично перекрещиваются. Длина и ширина хиазмы составляет около 10 миллиметров, толщина обычно не превышает 5 миллиметров. Строение хиазмы очень сложно, оно обеспечивает уникальный защитный механизм при некоторых видах повреждений глаз.

Роль хиазмы долгое время была неизвестна. Благодаря экспериментам В.М. Бехтерева, в конце XIX века стало ясно, что в хиазме нервные волокна частично перекрещиваются. Отходящие от носовой части сетчатки волокна перемещаются на противоположную сторону. Волокна височной части следуют дальше с той же стороны. Частичный перекрест создает интересный эффект. Если хиазму пересечь в переднезаднем направлении, изображение с обеих сторон не исчезает.

Пройдя перекрест, нервный пучок меняет название на «зрительный тракт», хотя по сути это те же самые нейроны.

Синаптические соединения и передача нервных импульсов

Синаптическая передача нервных импульсов происходит следующим образом. Когда нервный импульс достигает окончания аксона нейрона, он вызывает открытие специальных белковых каналов, называемых ионными каналами. Это приводит к изменению электрохимического потенциала клетки и в результате к высвобождению нейромедиаторов в синаптическую щель.

Синаптические соединения имеют несколько особенностей. Во-первых, передача нервных импульсов через синапсы является химической, а не электрической. Во-вторых, синаптическая передача может быть возбуждающей или тормозящей, в зависимости от типа нейромедиатора и рецепторов на мембране следующей клетки. И, наконец, синаптические соединения позволяют интегрировать и обрабатывать информацию, передаваемую от разных клеток, что является основой работы нервной системы.

Рецептор

Рецептор — это специальная чувствительная клетка или чувствительное нервное окончание, которое воспринимает раздражение и преобразует его в нервный импульс. 

В зависимости от расположения в организме рецепторы бывают: 

  • Экстерорецепторы (от “экстеро” — снаружи) — расположены в коже, слизистых, органах чувств;
  • Интерорецепторы (от “интеро” — внутри) — расположены во внутренних органах;
  • Проприорецепторы — рецепторы опорно-двигательного аппарата (находятся в сухожилиях, суставах).
Только в коже насчитывается около 500 тысяч осязательных рецепторов. То есть на каждый квадратный сантиметр кожи приходится около 25 рецепторов. Если бы у нас не было столько рецепторов, мы бы просто не выжили: рецепторы постоянно предупреждают нас об опасностях. 

Разные рецепторы реагируют на разные стимулы: на изменение давления, температуры, химического состава воздуха и т.д. В зависимости от природы воспринимаемых стимулов рецепторы подразделяются на: 

Механорецепторы — рецепторы, реагирующие на какое-то механическое воздействие: тактильные, проприорецепторы, слуховые, вестибулярные, барорецепторы (на давление), волюморецепторы (на растяжение). 

Например, закройте глаза и проведите пальцем по поверхности стола. Его гладкость или шероховатость, наличие или отсутствие узоров, — всё это воспринимают ваши механорецепторы. 

Терморецепторы — рецепторы, реагирующие на изменение температуры: холодовые и тепловые.

А теперь заварите себе чай. Если вы попытаетесь взять кружку не за ручку, а целиком, то скорее всего вы обожжетесь и отодвинете ее куда подальше. Это работа терморецепторов. 

Фоторецепторы — рецепторы, связанные с восприятием световых лучей: палочки и колбочки сетчатки.

Для знакомства с работой ваших фоторецепторов вам не нужно совершать какие-то особые действия: просто не закрывайте  глаза. Абсолютно всё, что вы сейчас видите, — это результат работы колбочек и палочек. 

Хеморецепторы — рецепторы, воспринимающие изменение химического состава: обонятельные, вкусовые, некоторые интерорецепторы. 

Ваш чай еще не остыл? Пододвигайте кружку обратно: самое время чем-то подкрепиться! Отломите кусочек шоколадки и положите его в рот. Ощущаете приятную сладость? Поблагодарите свои хеморецепторы — восприятие вкуса возможно благодаря им .  

Зрительные пути и их роль в зрительном анализаторе

Там, где зрительный путь соединяет сетчатку и корковый центр зрительного анализатора, имеется два нейрона, обозначают их как центральный и периферический. Путь периферического нейрона начинается от аксонов ганглионарных клеток, находящихся в сетчатке. Заканчивается периферический нейрон в структуре наружного коленчатого тела. Периферический нейрон подразделяется на три отдела зрительного пути, к ним относятся хиазма, зрительный тракт и зрительный нерв.

Центральный нейрон начинается от наружного коленчатого тела, точнее от его нервных клеток. В месте своего начала центральный нейрон образует так называемый пучок Грациоле, он проходит сквозь внутреннею капсулу и заканчивается в головном мозге – коре его затылочной доли в районе шпорной борозды.

Волокна, начинающиеся в верхних отделах сетчатки, проходят в дорсальной, верхней стороне зрительного нерва. Волокна нижнего сектора занимают его вентральную, то есть нижнюю часть. Такое же соответствие есть во внутренних и наружных секторах зрительного нерва и сетчатки.

Папилломакулярный пучок начинается от макулярной области, которая считается одной из самых функционально важных. Располагается этот пучок в диске нерва в его височном секторе. Занимает пучок 2/5 поперечного сечения. Свое периферическое расположение пучок сохраняет только в переднем отделе нерва, по мере удаления от глаза он несколько видоизменяет свою форму. В орбитальном отделе, его задней части, папилломакулярный пучок смещается в центральную часть зрительного нерва и далее идет по его оси. Центральное положение пучка заканчивается в том месте, где находится хиазма.

Хиазма – перекрест зрительных нервов. Полному перекресту подвергаются волокна нервов, выходящие из назальных участков сетчатки. На противоположный участок волокна переходят в медиальной части сетчатки. Расположенные латерально волокна не перекрещиваются с темпоральной стороны и остаются на ней же. Аналогично неполный перекрест определяется и в папилломакулярном пучке. Хиазма, подвергшаяся патологическим процессам, приводит к развитию битемпоральных гемианопсий.

Расположенные позади хиазмы зрительные пути обозначаются как зрительный тракт. Из-за полуперекреста волокон нервов правый зрительный тракт включает в себя волокна от правых отделов сетчатки. При его разрушении выпадают левые половины поля зрения и развивается левостронняя гомонимная гемианопсия. С левыми отделами обеих сетчаток связан левый зрительный тракт. При нарушении проводимости левого тракта выпадают правые поля зрения и возникает правосторонняя гемианопсия.

Кровоснабжение зрительного нерва

В кровоснабжении нерва зрительного участвует преимущественно глазная артерия. Отходит глазная артерия от пятого изгиба внутренней сонной артерии. Ход глазной артерии имеет несколько ответвлений, которые рядом со зрительным нервом спереди направляются к глазному яблоку, а сзади – к костному каналу. Кровоснабжение зрительного нерва также обеспечивается и более крупными артериями, к которым относят слезную артерию, заднюю цилиарную артерию и центральную артерию сетчатки.

Анатомия

Зрительный нерв, как и обонятельный, отличается от остальных пар черепных нервов и представляет собой часть мозга – белое вещество (остальные ведут свое происхождение от спинномозговых нервов).

Аксоны (нервные волокна) нейронов сетчатки группируются в зрительный нерв позади глаза, в области так называемого «слепого пятна». Нерв может содержать до 1,7 миллиона таких волокон. С возрастом их число постепенно уменьшается.

Внутриглазная часть нерва представляет собой диск, расположенный в области зрительной части сетчатки, который называют соском или диском зрительного нерва (ДЗН). Его диаметр достигает полутора миллиметров. В центре диска находится углубление – сосудистая воронка, в которой к глазному яблоку подходят вена и артерия.

Орбитальная (внутриглазничная) часть нерва имеет S-образную форму и расположена между глазным яблоком (после выхода нерва через решетчатую пластину склеры) и входом зрительного канала клиновидной кости. Эта часть покрыта тремя оболочками, защищающими нерв при движении глаз.

Следующая часть нерва жестко зафиксирована внутри зрительного канала и называется соответственно интраканаликулярной (внутриканальной). Наружная (твердая) оболочка нерва здесь сливается с надкостницей.

После выхода из зрительного канала нерв имеет уже только две оболочки. Внутричерепная часть располагается в субарахноидальном пространстве – полости между паутинной и мягкой оболочками мозга.

Общая длина зрительного нерва может достигать 55 мм.

В зоне турецкого седла нервы от обоих глаз формируют неполный зрительный перекрест – хиазму. Такое перекрещивание образуется волокнами, которые идут от внутренних половин сетчаток каждого глаза, тогда как волокна от внешних половин не пересекаются.

После области перекреста нервные волокна формируют зрительные тракты, каждый из которых состоит из волокон внешних половин сетчатки соответствующей стороны и внутренней половины противоположной.

Зрительные тракты заканчиваются в первичных (подкорковых) зрительных центрах, где происходит первичная переработка поступающей информации и формируются зрачковые реакции. Далее нервный импульс передается в корковый центр зрения, расположенный в коре затылочных долей мозга.

Строение глаза. Вспомогательный аппарат глаза

Глаз — находится в орбитальной впадине черепа — в глазнице, сзади и с боков окружён мышцами, которые его двигают. Он состоит из глазного яблока со зрительным нервом и вспомогательных аппаратов.

Глаз — самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаза совершают заметные движения (макродвижения) — повороты, перевод взора с одного предмета на другой, слежение за движущимися предметами. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательных мышцы, расположенные в глазнице. Всего их шесть. Четыре прямые мышцы крепятся к передней части склеры — и каждая из них поворачивает глаз в свою сторону. А две косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры. Согласованное действие глазодвигательных мышц обеспечивает одновременный поворот глаз в ту или иную сторону.

Орган зрения нуждается в защите от повреждений для нормального развития и работы. Защитными приспособлениями глаз являются брови, веки и слёзная жидкость.

Бровь — парная дугообразная складка толстой кожи, покрытая волосами, в которую вплетаются лежащие под кожей мышцы. Брови отводят пот со лба и служат для защиты от очень яркого света. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру — от каких-либо вредных воздействий. При моргании происходит равномерное распределение слёзной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания. Верхнее веко больше, чем нижнее, и его поднимает мышца. Веки закрываются за счёт сокращения круговой мышцы глаза, имеющей циркулярную ориентацию мышечных волокон. По свободному краю век располагаются ресницы, которые защищают глаза от пыли и слишком яркого света.

Слёзный аппарат. Слёзная жидкость вырабатывается специальными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слёзы увлажняют роговицу и способствуют сохранению её прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела, соринки, пыль и т.п. В слёзной жидкости содержатся вещества, убивающие микробов через слёзные канальцы, отверстия которых расположены во внутренних уголках глаз, попадает в так называемый слёзный мешок, а уже отсюда — в носовую полость.

Глазное яблоко имеет не совсем правильную шаровидную форму. Диаметр глазного яблока составляет примерно 2,5 см. В движении глазного яблока принимает участие шесть мышц. Из них четыре прямые и две косые. Мышцы лежат внутри глазницы, начинаются от её костных стенок и прикрепляются к белочной оболочке глазного яблока позади роговицы. Стенки глазного яблока образованы тремя оболочками.

Офтальмоскопическая картина ДЗН в норме


Глазное дно в норме

  • Форма ДЗН в большинстве случаев округлая или овальная с большим вертикальным меридианом.
  • Видимая величина ДЗН при офтальмоскопии колеблется в зависимости от вида исследования и рефракции исследуемого глаза.
  • Цвет в норме розовый или слегка красноватый. В пожилом возрасте к розовому цвету иногда примешивается желтоватый тон.
  • Ближе к носовому краю сосок толще и поэтому носовая половина его выглядит более красной, чем височная, которая в норме всегда кажется бледнее. ДЗН также бледнее у лиц с миопической рефракцией.
  • Границы ДЗН всегда отчетливы. Височный край выделяется несколько резче.
  • Наличие пограничных колец: склерального и хориоидального (пигментного).
  • ДЗН, как правило, расположен на уровне сетчатки.
  • Физиологическая экскавация. Всякая краевая и у края диска отвесная экскавация – патологическое явление.
  • На ДЗН видны центральные сосуды сетчатки. Также встречаются цилиоретинальные и оптикоцилиарные сосуды.

Заболевания зрительного нерва

Причиной заболевания зрительного нерва становятся различные факторы и патологические процессы, например:

  • отёк диска CN II;
  • неврит CN II;
  • постбульбарный неврит CN II;
  • оптическая невропатия;
  • атрофия зрительных нервов.

На основании этих патологических состояний врач может составить план обследования и лечения пациентов с заболеваниями зрительного нерва.

Невриты

Неврит зрительного нерва — это воспаление по всей его длине, включая диск CN II. На глазном дне при неврите зрительного нерва отмечаются гиперемия зрительного нерва, размывание его границ, расширение артерий и вен, кровоизлияние и очаги некроза на поверхности соска и окружающей сетчатки. Характеризуется ранним нарушением зрительных функций с одновременным развитием офтальмоскопических изменений.

Неврит CN II встречается при острых воспалительных заболеваниях нервной системы – менингит, энцефалит, энцефаломиелит, нейросифилис.

Атрофия

В случае атрофии зрительных нервов при офтальмоскопии отмечается побледнение зрительного диска, сужение кровеносных сосудов с сохранностью (при первичной атрофии) или границ износа (при вторичной атрофии) зрительного нерва.

Вторичная атрофия развивается после всех процессов, сопровождающихся невритом зрительного нерва или застойными явлениями. Первичная (простая) атрофия развивается при сифилитическом поражении нервной системы, сдавливании опухолью, рубцовой невроме, и некоторых других причинах.

Сочетание атрофии зрительного нерва в одном глазу с развитием застойного диска зрительного нерва в другом (синдром Фёрстера — Кеннеди) наблюдается при опухолях, туберкулёзе дёсен или поражении лобной доли головного мозга. Атрофия CN II происходит на стороне опухоли.

Ишемическая нейропатия зрительного нерва

Ишемическая нейропатия CN II имеет много общего с цереброваскулярным явлением, называемым инсультом. Патология возникает из-за нарушения кровоснабжения зрительного нерва, что может привести к целому спектру расстройств от ишемии до инфаркта с некрозом.

Тяжесть травмы зависит от степени и продолжительности сосудистой обструкции. Более лёгкие версии ишемической нейропатии могут возникать при временном нарушении кровотока в зрительном нерве, известном как временная потеря зрения.

Как и мозг, CN II не восстанавливается после серьёзного повреждения (инфаркта) и зрительные импульсы, ослабленные этой областью, будут навсегда потеряны.

ВАЖНО! При артериальных повреждениях глаза следует учитывать, что существует повышенный риск подобного ишемического события в других частях тела (например, в сердце, головном мозге или почках).

Колобома

Редкое одностороннее или двустороннее врождённое состояние, вызванное неполным закрытием зародышевой трещины. Первые заметные признаки заболевания обычно появляются на втором году жизни.

Ребёнок, как правило, имеет серьёзные проблемы с балансом — учится ходить, наклоняясь телом или головой в сторону здорового глаза, чтобы исправить перекос в восприятии мира. Часто малыш падает в том же направлении во время ходьбы или сталкивается с предметами, находящимися на его «слепой» стороне. Иногда при фотосъёмке вместо «эффекта красных глаз» наблюдаются белые пятна.

Гипоплазия зрительного нерва

Гипоплазия зрительного нерва — это врождённое состояние, характеризующееся недоразвитием CN II и прилегающих структур средней линии мозга. Причины аномалии до сих пор неизвестны.

У пациентов с гипоплазией зрительный нерв либо отсутствует, либо не развился должным образом. Некоторые люди с такой аномалией  имеют порок развития (дисплазия) или отсутствие (агенезия) других структур средней линии мозга, которые физически находятся вблизи зрительного нерва.

Гипоплазия CN II связана с множеством уникальных характеристик, которые отличают её от слепоты или нарушения зрения вследствие других причин. Пациенты демонстрируют широкий диапазон зрения — от довольно хорошей остроты до полной слепоты. В некоторых случаях наличествуют быстрые, непроизвольные движения глаз, которые человек не в состоянии контролировать — так называемый нистагм.

Симптомы поражения зрительного нерва

В зависимости от патологии, вызвавшей повреждение зрительного нерва, симптомы могут разниться. Однако в большинстве случаев присутствуют следующие расстройства:

  • постепенная или внезапная потеря зрения, обычно на один глаз;
  • сильная затуманенность зрения, которая может перерасти во временную слепоту;
  • боль при движении глазных яблок;
  • головная боль;
  • потеря цветового зрения;
  • мерцающие огни в глазах;
  • изменения реакции пациента на яркий свет;
  • выпадение какого-либо участка поля зрения.

Лечение

Поскольку к повреждению оптического нерва приводят многие факторы, терапия назначается только после постановки окончательного диагноза. В большинстве случаев борьба с недугом ведется в стационаре.

Ишемическая нейропатия – очень опасная патология, требующая экстренной помощи. Терапию необходимо начать в первые двадцать четыре часа от начала приступа. При затягивании с лечением повышается риск сильного и безвозвратного падения остроты зрения. Лечение недуга включает прием кортикостероидов, мочегонных препаратов, ангиопротекторов.

Травматические аномалии оптического нерва могут привести к серьезным проблемам со зрением. В первую очередь требуется устранить давление на хиазму. Для этого применяют форсированный диурез, проводят трепанацию черепной коробки. Прогнозы при таких повреждениях неоднозначны. Порой зрение удается сохранить полностью, а иногда пациент слепнет.

Ретробульбарный и бульбарный невриты в большинстве случаев сигнализируют о развитии рассеянного склероза. Вторая наиболее распространенная причина появления патологий – инфекции (грипп, краснуха, корь). Терапия направлена на устранение отечности и воспаления нерва. Используются кортикостероиды, антибактериальные и противовирусные средства.

Доброкачественные опухоли в 90% случаев диагностируют у детей. Глиома располагается внутри зрительного канала и склонна к разрастанию. Терапии недуг не поддается, и малыш может ослепнуть.

Основная симптоматика патологии:

  • На поврежденной стороне очень быстро падает острота зрения, вплоть до полной его потери.
  • Развивается экзофтальм. Пучеглазие затрагивает то око, нерв которого затронут новообразованием.

Чаще всего глиома повреждает именно волокна оптического нерва, в редких случаях оптико-хиазмальный участок. Опухоль на последнем трудно поддается диагностике на ранней стадии и может привести к распространению на второй глаз.

Атрофия оптического нерва лечится курсами. Терапию проводят два раза в год, чтобы поддерживать оптимальное состояние пациента. В нее входит прием медикаментов («Мексидол», «Ретиналамин») и физиотерапия (электростимуляция, магнитофорез).

Структура

Каково же строение зрительного нерва (ЗН)? Начинается оно со зрительного диска – участка на сетчатке, пронизанного нервными волокнами. Затем они собираются в нервные пучки, структура которых состоит из 4 участков:

  1. Интрабульбарный (внутри глаза). Расположен между диском и склерой в месте, из которого выходит нерв. Длина участка – около 1,5 мм. Его образуют протяженные нервные окончания сетчатка глаза, образованной ганглиарными клетками. На этом отрезке нервные волокна лишены оболочек.
  2. Ретробульбарный (или орбитальный участок). Имеет длину примерно 33 мм. Он берет начало от решетчатой склеральной пластины и утолщается до 4 мм за счет футляра вокруг, образованного тремя мозговыми оболочками. Внутри волокон также содержится миелин.
  3. Внутриканальный участок. Расположен между орбитальным и внутричерепным отрезком оптического нерва. В длину он составляет примерно 4 мм. На этом промежутки оболочки зрительного нерва срастаются с надкостницей. При этом расстояние между защитными оболочками сокращается, что приводит к уменьшению толщины нервных волокон.
  4. Интракраниальный (или внутричерепной участок). Он берет начало на конце зрительного канала и протягивается вплоть до хиазмы – места, где зрительные волокна сплетаются между собой. Длина отрезка составляет от 4 до 16 мм. На данном участке нервы уплощаются, их очертания становятся овоидными.

После хиазмы – места, где перекрещиваются между собой нервы правого и левого глаза, начинается зрительный путь. Он предназначен для доставки нервных импульсов до зрительного центра, представленного отростком головного мозга, именуемого таламусом.

Глаз как оптический прибор

Параллельным потоком световое излучение попадает на радужная оболочку (выполняет роль диафрагмы), с отверстием, через которое свет поступает в глаз; эластичный хрусталик — это своеобразная двояковыпуклая линза, фокусирующая изображение; эластичная полость (стекловидное тело), придающая глазу сферическую форму и удерживающая на своих местах его элементы. Хрусталик и стекловидное тело обладают свойствами передавать структуру видимого изображения с наименьшими искажениями. Регулирующие органы управляют непроизвольными движениями глаза и приспосабливают его функциональные элементы к конкретным условиям восприятия. Они изменяют пропускную способность диафрагмы, фокусное расстояние линзы, давление внутри эластичной полости и другие характеристики. Управляют этими процессами центры в среднем мозгу с помощью множества чувствительных и исполнительных элементов, распределенных по всему глазному яблоку. Измерение световых сигналов происходит во внутреннем слое сетчатки, состоящем из множества фоторецепторов, способные преобразовывать световое излучение в нервные импульсы. Фоторецепторы в сетчатке распределены неравномерно, образуя три области восприятия.

Первая — область обзора — находится в центральной части сетчатки. Плотность фоторецепторов в ней наивысшая, поэтому она обеспечивает четкое цветное изображение предмета. Все фоторецепторы в этой области по своему устройству в принципе одинаковы, отличаются они только избирательной чувствительностью к длинам волн светового излучения. Одни из них наиболее чувствительны к излучениям (средняя части), вторые — в верхней части, третьи — в нижней. У человека есть три вида фоторецепторов, реагирующих на синие, зеленые и красные цвета. Здесь же, в сетчатке, выходные сигналы этих фоторецепторов совместно обрабатываются в результате чего усиливается контраст изображения, выделяются контуры объектов и определяется их цвет.

Объемное изображение воспроизводится в коре головного мозга, куда направляются видеосигналы от правого и левого глаза. У человека область обзора охватывает всего в 5°, и только в ее пределах он может осуществлять обзорно-сравнительные измерения (ориентироваться в пространстве, распознавать объекты, следить за ними, определять их относительное расположение и направление движения). Вторая область восприятия выполняет функцию захвата целей. Она располагается вокруг области обзора и не дает четкого изображения видимой картины. Ее задача — быстрое обнаружение контрастных целей и изменений, происходящих во внешней обстановке. Поэтому в этой области сетчатки плотность обычных фоторецепторов невысока (почти в 100 раз меньше, чем в области обзора), зато имеется множество (в 150 раз больше) других, адаптивных фоторецепторов, реагирующих только на изменение сигнала. Совместная обработка сигналов тех и других фоторецепторов обеспечивает высокое быстродействие зрительного восприятия в этой области. Кроме того, человек способен быстро улавливать малейшие движения боковым зрением. Функциями захвата управляют отделы среднего мозга. Здесь интересующий объект не рассматривается и не распознается, а определяется его относительное расположение, скорость и направление движения и даётся команда глазодвигательным мышцам — быстро повернуть оптические оси глаз так, чтобы объект попал в зону обзора для детального рассмотрения.

Третью область образуют краевые участки сетчатки, на которые не попадает изображение объекта. В ней плотность фоторецепторов самая маленькая — в 4000 раз меньше, чем в области обзора. Ее задача — измерение усредненной яркости света, которая используется зрением как точка отсчета для определения интенсивности попадающих в глаз потоков света. Именно поэтому при различном освещении зрительное восприятие меняется.

Строение зрительного нерва

Строение, впрочем, как и вся нервная система – достаточное сложное и обладает специфическими особенностями. В первую очередь – это соединение многочисленных тонких волокон, которые сплетаются вокруг центрального артериального канала сетчатки. Нерв представлен в виде субстанции, которая обладает беловатым цветом и чем-то схожа с мозговым веществом. Физиологически нерв начинается в ганглиозных клетках, которые обладают специфическими отростками, формирующими в виде дисковой формы небольшой пучок. При этом происходит формирование нервного соска. Менингеальные структуры срастаются с нервными волокнами, которые обволакивают поверхность склеры. Используя миелин можно изолировать отдельные волокна. Через глазное яблоко, транспортирующийся нерв проходит через субстанцию глазницы, достигая зрительного канала. Благодаря такому строению информация поступает в череп.

Но известно, что каждый вид информации, должен поступать в определенную часть мозга, чтобы человек мог адекватно воспринимать информацию и действовать под влиянием команд, исходящих из мозга. С этой целью нервные волокна плотно сплетаясь, перемещаются в определенную часть, достигая конечной точки, а именно центра мозга.

Ссылка на основную публикацию
Похожие публикации