Цилиарное тело

Патологии цилиарного тела

Цилиарное тело глаза: врожденная патология

Патологическое состояние цилиарного тела глаза зачастую связано с нарушением его структуры из-за врожденных или приобретенных дефектов. Любой из последних влечет за собой неисполнение физиологических функций данной части органа, вследствие чего у человека могут появиться:

  1. Глаукома – знакомое многим стабильное или периодическое повышение внутриглазного давления. Развивается патология из-за нарушения в равновесии относительно синтезируемой жидкости внутри глаза и ее оттоком.
  2. Иридоциклит – воспалительный процесс, затрагивающий цилиарное тело и радужку глаза. Может возникнуть при попадании инфекции или же из-за нанесения травмы органу.
  3. Гипотония глаза – это противоположность глаукомы, характеризующаяся стабильным или периодическим понижением внутриглазного давления. Данная патология также происходит из-за нарушений в секреции и передвижении внутри глаза жидкости. Отличается гипотония появлением отека эпителия органа, из-за чего может пострадать зрительная функция.
  4. Новообразования в цилиарном теле. Подобный недуг способен негативно отразиться на многих функциях данной части глаза, но встречается достаточно редко. Образования в цилиарном теле зачастую являются доброкачественными, но иногда могут иметь и недоброкачественных вид, что осложняет их терапию.

Разного рода врожденные патологии цилиарного тела (вывих хрусталика, атрофия глазного яблока и т.п.). Характеризуются такие недуги нарушением функций глаза, зачастую лечению не поддаются, в отличие от описанных ранее.

Тема видеомастер-класа «Нарушения аккомодации и их лечение«:

Нарушения аккомодации и их лечение. Мастер-класс «Аккомодация в клинических иллюстрациях»Нарушения аккомодации и их лечение. Мастер-класс «Аккомодация в клинических иллюстрациях»

Анатомия цилиарного тела

Цилиарное тело глаза еще называют ресничным

Цилиарное тело глаза (также называемое – ресничным) – это важная часть сосудистой сетки органа, состоящая из кровеносных сосудов и мышечных тканей. Совокупная деятельность всех мышечных волокон тела видоизменяет форму хрусталика, что необходимо для выполнения функции аккомодации.

Помимо этого, цилиарное тело выполняет ряд других, не менее важных функций, подробно о которых поговорим в следующем пункте статьи. Сейчас же давайте рассмотрим анатомическое строение данной части глаза.

Говоря более точно, цилиарное тело – это средняя часть сосудистой оболочки зрительного органа. Располагается оно под склерой за радужкой вокруг глазного яблока. Если рассматривать анатомию и расположение цилиарного тела проще, то можно сказать, что оно локализуется невозможным для его внешнего рассмотрения образом.

В разрезе цилиарное тело – это ярко выраженный треугольник, вершина которого выступает вглубь глаза. В офтальмологии и науке данная часть органа подразделяется на две основные части:

  • Первая – это, так называемая, плоская область цилиарного тела. Она имеет ширину 4 миллиметра и располагается до зубчатой линии органа.
  • Вторая – это ресничная область цилиарного тела (отсюда и второе его название – ресничное). Имеет ширину 2 миллиметра и отличается от другой части наличием ресничных отростков. Последние, к слову, представляют собой небольшие пластинки, имеющие в своей структуре сосудистую сеть, которая участвует в фильтрации крови, поступающей в данную часть глаза, и образовании внутриглазной влаги.

Структурно, цилиарное тело делится на:

  1. мезодерамельный слой, состоящий из соединительной и мышечной тканей;
  2. нейроэктодермальный слой, включающий в свой состав сетчатую оболочку и нефункциональный эпителий.

Если же рассматривать цилиарное тело глаза начиная с самой дальней его внутренней части, то сначала располагается мышечный слой, а за ним постепенно идут сосудистый слой, базальные пластинки, слои нефункционального эпителия и мембранная оболочка.

Ранее упомянутая мышечная оболочка цилиарного тела располагается волокнами в различных направлениях. В совокупности данные мышцы глаза соединены с хрусталиком ресничным пояском (своеобразная связка), что обеспечивает функцию аккомодации посредством сложно организованных нервных импульсов и мышечных сокращений хрусталиковой капсулы.

Непосредственно сосудистая структура цилиарного тела образуется огромным количеством, преимущественно, венозных сосудов, расположенных большинством своим в мышечной оболочки данной части глаза. Кровоснабжением последних занимаются две длинные задние цилиарные артерии.

Помимо основных структурных составляющих – мышц и кровяных сосудов, цилиарное тело содержит немалое количество нервных окончаний, за счет которых при патологиях тела человек ощущает болевые ощущения.

Общие сведения об устройстве и работе органа зрения

Анатомия органа зрения подразумевает его разделение на 2 части: внутренние (расположенные в полости черепа) и внешние (различимые снаружи).

К последним относятся следующие части глаза:

  • зрачок;
  • радужка;
  • склера;
  • роговица;
  • слизистые оболочки или конъюнктива;
  • слезные железы;
  • веки;
  • границы глазницы.

Из-за век и мягких тканей, наполняющих полость глазницы, орган зрения визуально похож на миндалевидную структуру. При разрезе черепа и удалении лишних оболочек становится ясно, что глаз имеет шарообразную слегка приплюснутую форму. Его масса составляет 7-10 г. Орган зрения вытянут от лба к затылку, что обусловлено его функциональными особенностями. В то же время глаз не всегда сформировывается нормально: если его длина увеличится, развивается миопия, в противном случае — дальнозоркость.

Орган зрения располагается в полости черепа, в глазнице. Кости защищают его мягкую структуру от получения травм. Внешне человек различает только ⅕ часть глазного яблока. Оно является передней или начальной частью зрительного анализатора. Глаз воспринимает лучи света, которые после проникновения через зрачок, хрусталик и стекловидное тело попадают на сетчатку. При этом величина видимого изображения уменьшается, а оно само переворачивается.

Нервные окончания и фоточувствительные клетки при воздействии света раздражаются. В результате в них формируется нервный импульс, содержащий визуальную информацию об окружающей среде. Она передается по зрительному нерву к затылочной части головного мозга, где происходит дальнейший анализ и обработка полученных данных.

Нервные окончания

К глазам подходят 2 пары черепно-мозговых нервов: глазодвигательный и зрительный. Первый отвечает за движения глазного яблока, регулирует сокращения и расслабления прямых и косых мышц органа зрения. Зрительный нерв представляет собой связующее звено между сетчаткой и головным мозгом.

Сетчатая оболочка и зрительный нерв формируют рецепторный аппарат глаза. Сетчатка содержит светочувствительные клетки, тела и короткие отростки нейронов. Они формируют нервные импульсы, содержащие информацию о видимом изображении и передают ее к затылочной доле мозга. Отростки нейронов переплетаются в зоне слепого пятна и проходят через сетчатку в полость черепа в виде зрительного нерва.

Сетчатка отличается многоэтажным сложным строением. При рассмотрении структуры через микроскоп можно насчитать до 10 слоев. На наружном слое сидят палочки и колбочки. Нейроэпителиальные клетки определяют цвет видимого объекта благодаря высокой чувствительности к световым лучам. Функции фоточувствительных элементов различаются:

  1. Палочки отвечают за восприятие окружающего мира в сумерках, позволяя видеть в полумраке. Они более чувствительны, чем колбочки, потому что могут улавливать даже небольшие и слабые потоки солнечных лучей. Для полноценной работы требуют потребление ретинола или витамина A. Их количество больше, чем число колбочек. Благодаря палочкам человек различает белый и черный цвет.
  2. Колбочки обеспечивают дневной зрение и цветовое восприятие. Из-за поступления большого количества света днем организму не требуется большое количество колбочек, поэтому их меньше.

На следующих слоях расположены хориокапилляры, пигментные клетки и нервные окончания. Сосуды поставляют нервным окончаниям, кислород, ретинол и ряд минеральных соединений.

У всех позвоночных животных сетчатка будто вывернута наизнанку, поэтому видимое изображение является перевернутым.

Оболочки глаза

Снаружи оно покрыто белочной оболочкой (склерой). Она самая толстая, прочная и обеспечивает глазному яблоку определённую форму. Склера составляет приблизительно 5/6 часть наружной оболочки, она непрозрачна, белого цвета и частью видна в пределах глазной щели. Белковая оболочка — очень прочная соединительнотканная оболочка, которая покрывает весь глаз и защищает его от механических и химических повреждений.

Передняя часть этой оболочки прозрачная. Она называется — роговицей. Роговица имеет безупречную чистоту и прозрачность благодаря тому, что постоянно протирается мигающим веком и промывается слезой. Роговица — единственное место в белковой оболочке, через которое внутрь глазного яблока проникают лучи света. Склера и роговица — довольно плотные образования, обеспечивающие глазу сохранение формы и предохранение его внутренней части от различных внешних вредных воздействий. За роговицей находится кристально прозрачная жидкость.

Изнутри к склере прилегает вторая оболочка глаза — сосудистая. Она обильно снабжена кровеносными сосудами (выполняет питательную функцию) и пигментом, содержащим красящее вещество. Передняя часть сосудистой оболочки называется радужной. Находящийся в ней пигмент обусловливает цвет глаз. Окраска радужки зависит от количества пигмента меланина. Когда его много — глаза тёмно- или светло-карие, а когда мало — серые, зеленоватые или голубые. Людей с отсутствием меланина называют альбиносами. В центре радужки есть небольшое отверстие — зрачок, который, суживаясь или расширяясь, пропускает, то больше, то меньше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом. В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен — хрусталик — прозрачное тело, похожее на лупу, крошечная двояковыпуклая линза диаметром 10 мм. Он преломляет лучи света и собирает их в фокусе на сетчатке. При сокращении или расслаблении ресничной мышцы хрусталик меняет свою форму — кривизну поверхностей. Это свойство хрусталика позволяет чётко видеть предметы как на близком, так и на далёком расстоянии.

Третья, внутренняя оболочка глаза — сетчатая. Сетчатка имеет сложное строение. Она состоит из светочувствительных клеток — фоторецепторов и воспринимает свет, поступающий в глаз. Она расположена только на задней стенке глаза. В сетчатке различают десять слоёв клеток

Особенно важное значение имеют клетки, получившие название колбочек и палочек. В сетчатой оболочке палочки и колбочки расположены неравномерно

Палочки (около 130 млн.) отвечают за восприятие света, а колбочки (около 7 млн.) — за цветовое восприятие.

Палочки и колбочки имеют в зрительном акте различное назначение. Первые работают на минимальном количестве света и составляют сумеречный аппарат зрения; колбочки же действуют при больших количествах света и служат для дневной деятельности аппарата зрения. Различная функция палочек и колбочек обеспечивает высокую чувствительность глаза к очень высоким и низким освещенностям. Способность глаза приспосабливаться к разной яркости освещения называется адаптацией.

Глаз человека способен различать бесконечное разнообразие цветовых оттенков. Восприятие многообразия цветов обеспечивают колбочки сетчатки. Колбочки чувствительны к цветам только при ярком свете. При слабом освещении восприятие цветов резко ухудшается, и все предметы в сумерках кажутся серыми. Колбочки и палочки действуют вместе. От них отходят нервные волокна, образующие затем зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг. Зрительный нерв состоит примерно из 1 млн. волокон. В центральной части зрительного нерва проходят сосуды. В месте выхода зрительного нерва палочки и колбочки отсутствуют, вследствие чего свет этим участком сетчатки не воспринимается.

Функции реснитчатого тела

Его второе медицинское название — цилиарное тело. В составе находятся множественные разветвления сосудов и клеток, имеющие аналогичное строение с гладкомышечными тканями. Вся клетчатая структура располагается послойно, таким образом, что каждый из слоев имеет свое направление. Благодаря такой анатомии цилиарное тело выполняет свои функции. Главные задачи реснитчатого тела заключаются в следующих функциях:

  1. Обеспечивает постоянный доступ для поступления питательных элементов органа зрения, в частности к мышечным структурам;
  2. Позволяет глазам фокусироваться на различных дистанциях (аккомодация);
  3. Стабилизирует и поддерживает необходимое давление внутри глазного яблока.

Светопреломляющие структуры

Прежде чем свет достигнет сетчатки глаза, он должен пройти через несколько светопреломляющих структур:

  • Роговица — передняя прозрачная часть склеры, является первой линзой на пути световых лучей. Функция — механическая защита глаза и пропускание световых лучей.
  • Передняя камера глаза — пространство между роговицей и радужной оболочкой, заполненное прозрачной жидкостью — водянистой влагой.
  • Задняя камера глаза — пространство между радужной оболочкой и хрусталиком, заполненное прозрачной жидкостью — водянистой влагой.
  • Стекловидное тело — полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.
  • Хрусталик — прозрачная двояковыпуклая линза, которая может изменять свою кривизну и таким образом фокусировать световые лучи. Изменять кривизну хрусталика помогает ресничное тело (цилиарная мышца). Вот, как это происходит:

Почему на некоторых фотографиях у людей получаются красные глаза?При плохом освещении зрачок расширяется, а при резком включении вспышки он начинает сужаться, чтобы уменьшить количество поступающего в глаз света, но не успевает сделать это полностью. Из-за этого свет попадает на сосудистую оболочку, и отражается от нее. То есть камера фиксирует цвет сосудистой оболочки глазного дна в отраженном свете при фотовспышке. 

Строение глаза

Глазное яблоко состоит из трех оболочек:

1) Белочная оболочка (склера) — это наружная оболочка, состоящая из соединительной ткани. Она выполняет функцию защиты глаза, а также придает ему форму. Спереди она переходит в прозрачную структуру — роговицу.

2) Сосудистая оболочка — это средняя оболочка, которая содержит кровеносные сосуды, питающие глазное яблоко. Спереди она переходит в радужку, в которой есть отверстие – зрачок. В зависимости от интенсивности освещения он меняет свои размеры. 

3) Сетчатая оболочка — внутренняя оболочка, содержащая рецепторы, отвечающие за восприятие света и преобразование его в нервный импульс. В сетчатке выделяют два типа рецепторов:

  • Палочки — воспринимают свет в условиях сумеречного освещения, содержат пигмент родопсин.
  • Колбочки — воспринимают дневной свет и цвета при ярком освещении, содержат пигмент йодопсин. 
Почему говорят, что для хорошего зрения нужно есть морковку?Дело в том, что в моркови, а также в рыбе, яйцах, сыре и других продуктах содержится витамин А. Он необходим для синтеза родопсина — главного пигмента палочек, рецепторов, воспринимающих световые стимулы.

В сетчатке выделяют два “пятна”:

  • Желтое пятно — место наибольшей концентрации колбочек. Здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. 
  • Слепое пятно – место выхода зрительного нерва из глазного яблока. Здесь отсутствуют палочки и колбочки.
От чего зависит цвет глаз?В структуре глаза можно выделить такое образование, как радужка. Она содержит пигменты, их концентрация и соотношение и определяет цвет наших глаз. Наличие пигментов обусловлено генетически. Например, голубой цвет глаз связан с наличием малого количества меланина, а коричневый или черный — с его высокой концентрацией. 

Строение

Скелетные и соединительнотканные клетки формируют слой мезодермы, а нефункциональные эпителиальные клетки, переходящие с сетчатки, формируют нейроэктодермальный слой.

Эти пласты клеток образуют слои, располагающиеся один над другим. Перечислим их по порядку следования, начиная с внешней стороны:

  1. Внутренняя пограничная мембрана;
  2. Пигментированный эпителиальный слой и эпителий, лишенный пигмента;
  3. Фибриллярная мембрана;
  4. Слой сосудов;
  5. Слой разнонаправленных мышц.

Залегающий глубже всех скелетный слой обеспечивает уникальный навык человеческого глаза осуществлять процесс аккомодации. В нем дифференцируют некоторое количество пучков мышечных волокон, расходящихся в нескольких направлениях:

  • Мышца Брюке (локализуется на самой поверхности продольно);
  • Мышца Иванова (локализуется глубже и располагается радиально);
  • Мышца Мюллера (локализуется глубже всех циркулярно).

Самая глубоко залегающая область цилиарного тела скреплена с капсулой хрусталика ресничным пояском, сформированным из колоссального количества тонюсеньких волоконец. Именно данный поясок отвечает за стабильную локализацию хрусталика в толще глаза и осуществляет аккомодацию, основываясь на функционировании цилиарной мышцы. Возможно дифференцировать передние и задние цилиарные волоконца. Передние волокна закреплены в экваториальном участке хрусталика, а также в зоне позади него, задние же берут свое начало в районе зубчатой линии и закреплены перед экваториальной зоной хрусталика.

Сосудистый слой представляет собой собственно продолжение хориоидеиальных сосудов, состоящий преимущественно из вен, толщина которых варьирует здесь в широких пределах. Все артерии хориоидеи, локализуются в околососудистом пространстве, а в толще цилиарного тела они меняют свою локализацию и занимают положение между слоями мышечных волокон, отдавая свои мельчайшие капилляры непосредственно в обратном направлении, в сосудистую оболочку.

Базальная пластинка аналогично по сути продолжает участки хориоидеи. В середине она выстлана эпителиальными клетками двух типов – содержащими пигмент и полностью его лишенными. Они по сути являются нефункциональной сетчаткой, отделенную от стекловидного тела внутренней пограничной мембраной.

Цилиарное тело снабжается кровью пара протяженных задних цилиарных артерий, которые тянутся от заднего полюса органа зрения через надсосудистое пространство хориоидеи.

Оно сильно иннервировано, но не смотря на это, в неонатальный период и у маленьких детей развито не в полной мере, с чем связано безболезненное и незаметное течение некоторых заболеваний органов зрения в раннем детстве. В полной мере формирование цилиарного тела завершается в детском возрасте от 7 до 10 лет. К 10 годам у ребенка уже имеется полностью сформированное цилиарное тело, способное в полном объеме выполнять свои функции.

Строение цилиарного тела

Анатомическая форма цилиарного тела представляет замкнутое кольцо, которое расположено под между и . В силу того что цилиарное тело скрыто радужной оболочкой, его осмотр в момент обследования глаз является невозможным. В структуре строения цилиарного тела различают две части: плоскую и ресничную. Ширина плоской части составляет 4 мм и доходит это часть до зубчатого края. Ширина ресничной части составляет 2 мм, на ней располагается около 80 цилиарных отростков, совокупность которых представляет собой цилиарную корону.

Ресничный отросток – представляет собой небольшую пластину, которая имеет выраженную сеть из кровеносных сосудов, за счет которых и обеспечивается фильтрационная функция крови с последующим образованием внутриглазной жидкости.

Клеточное строение цилиарного тела представлено мезодермальным слоем, который включает в себя мышечную и соединительную ткань, и нейроэктодермальным слоем, который содержит нефункционирующий слой эпителия из сетчатой оболочки глаза.

Порядок расположения слоев клеток в цилиарном теле изнутри к наружи
:

Мышечный слой – сосудистый слой – базальная пластина – пигментный слой эпителия – беспегментный слой эпителия – внутренняя пограничная мембрана

В мышечном слое различают несколько групп мышечных пучков, которые расположены в разных направлениях. Продольное направление имеют мышцы Брюкке и располагаются они снаружи, глубже в радиальном направлении располагаются мышечные волокна, они же мышцы Иванова, а последняя группа мышц, мышц Мюллера имеет циркулярное направление.

Внутренняя поверхность цилиарного тела связана с капсулой хрусталика, по средствам ресничного пояска, который состоит из множества тонких волокон. Поясок выполняет фиксирующую функцию, удерживая хрусталик в правильном положении, а при работе цилиарной мышцы принимает участие в процессе . Выделяют передние и задние зонулярные волокна, передние к задней части хрусталика и к его экватору, задние крепятся к экватору хрусталик и его передней части.

В тот самый момент, когда цилиарная мышца напряжена связки расслабляются, снижается напряжение с капсулы хрусталика, хрусталик приобретает округлую форму. В момент расслабления происходит обратный процесс, связки напрягаются, увеличивается напряжение капсулы хрусталика, приобретает более вытянутую форму.

Слой кровеносных сосудов является непосредственным продолжением собственно сосудистой оболочки глаза, значительная часть которого состоит из вен разной величины, потому что артерии собственно сосудистой оболочки располагаются в околососудистом пространстве и цилиарном теле, где их расположение находится в мышечном слое, отдавая мелкие ветки сосудов обратно в собственно сосудистую оболочку.

Также продолжением собственно сосудистой оболочки является и базальная мембрана, внутреннее покрытие которой представлено пигментным и беспигментным эпителием. Эти два слоя эпителия представляют собой нефункционирующую сетчатую оболочку, отделенную от стекловидного тела пограничной мембраной

Кровоснабжение цилиарного тела обеспечивается двумя артериями, которые ограничены в надсосудистом пространстве полюсом глаза и цилиарным телом. Цилиарное тело имеет большое количество нервных окончаний, однако, у новорожденных детей оно развито слабо, только лишь к семи иногда даже к десяти годам цилиарное тело начинает полностью функционировать.

Важной частью сосудистой сетки органа является ресничное или цилиарное тело глаза, состоящее из сосудов и гладкомышечных клеток. Когда мышцы напрягаются или расслабляются, то изменяется форма хрусталика, за счет которой можно видеть четко предметы, находящиеся близко или далеко

Каппиляры способствуют продуцированию жидкости, выполняется кровоснабжение подлежащих тканей. Благодаря этому поддерживаются все основные функции, которые выполняет глаз.

строение глаза

     Глазное яблоко расположено в костном углублении передней части черепа, называемом  орбита или глазница. Там же находятся глазодвигательные нервы и  мышцы, зрительный нерв, слёзная железа, сосуды и  жировая клетчатка, служащая глазу своего рода амортизатором.     Спереди глазное яблоко защищено веками и покрыто слизистой оболочкой (конъюнктивой).     Наружная оболочка  (фиброзная капсула) глаза представлены склерой и роговицей.  Склера – это плотная ткань белого цвета толщиной 0,5 –0,8 мм. Она поддерживает постоянную форму глаза и защищает его от вредных воздействий. В передней части склера переходит в прозрачную роговицу. Этот участок фиброзной капсулы называется лимбом. За роговицей  находится передняя камера, представляющая собой пространство, заполненное прозрачной внутриглазной жидкостью.                                                                                                                 Под фиброзной капсулой расположена              сосудистая оболочка глаза. Передняя  её часть видна сквозь роговицу – это радужка. По окраске радужной оболочки судят о цвете глаз.     В центре её имеется круглое отверстие, называемое зрачком. На свету зрачок суживается, в темноте – расширяется. Так регулируется количество поступающего в глаз света. Цилиарное тело –вторая часть сосудистой оболочки. Оно играет важную роль в образовании внутриглазной жидкости и регулирует изменение кривизны поверхностей хрусталика, благодаря чему оказывается возможным приспособление глаза к зрению на разных расстояниях. Ещё одна часть сосудистой оболочки – хориоидея.  Она состоит из сети кровеносных сосудов, по которым непрерывно поступают питательные вещества и кислород, обеспечивающие энергией зрительный акт.     Внутреннюю поверхность глаза выстилает сетчатая оболочка (сетчатка),  воспринимающая изображение предметов. Информация о них передаётся через зрительный нерв в головной мозг, в котором происходит окончательное преобразование зрительного раздражения в зрительное ощущение.     К содержимому глазного яблока относят  хрусталик и стекловидное тело. Хрусталик взрослого человека представляет собой заключённое в капсулу плотно-эластичное, прозрачное тело желтоватой окраски, которое по форме напоминает двояковыпуклую линзу. Толщина этой живой линзы примерно 3,5 мм, а диаметр – 10 мм. Хрусталик является частью оптической системы глаза. Из общей преломляющей силы оптического аппарата органа зрения (60 диоптрий) на него приходится примерно 18. Из этого понятно, что одна из функций хрусталика – это преломление и проведение лучей света. Хрусталик находится за радужкой и удерживается на месте с помощью цинновых связок. Волокна этих связок начинаются от цилиарного тела и прикрепляются к хрусталику, вплетаясь в переднюю и заднюю его капсулу (так условно делят единую капсулу). Хрусталик, как ноготь или волос, растёт в течение всей жизни. Уплотнение центральной части линзы (так называемого ядра) предотвращает чрезмерное увеличение хрусталика в объёме. Питание и обмен осуществляются путём диффузии из внутриглазной жидкости, которая омывает хрусталик со всех сторон.    Полость глазного яблока, расположенная захрусталиком, заполнена прозрачным студенистым стекловидным телом.     Для нормальной  работы зрительного анализатора необходимо, чтобы все его части – глазное яблоко, проводящие пути  и высшие зрительные центры, расположенные в коре головного мозга, – не имели никаких болезненных изменений. Преломляющие среды  (роговица, водянистая влага, хрусталик, стекловидное тело) должны быть прозрачны.          Составил доцент Г.Н.Логинов

Диагностика

На начальном этапе диагностики заболеваний производится анализ проявлений патологии. В целях постановки точного диагноза прибегают к специальным методам обследования:

  1. Пальпация. Специалист нажимает на яблоко глаза пальцем и выявляет боль.
  2. Осмотр анатомической структуры с помощью микроскопа (с использованием специальной линзы).
  3. Трансиллюминация. Процедура проводится для выявления опухоли или инородного тела в глазу. За счет лучей диафаноскопа создается однородное красное свечение зрачка. При наличии патологий оно отсутствует или снижено.
  4. Ультразвуковое исследование.
  5. Биомикроскопия. Проводится бесконтактный осмотр органа посредством офтальмологической щелевой лампы.
  6. Тонометрия, тонография. Методики позволяют узнать давление внутри глаза, выявить сбои в процессе секреции и движения внутриглазной жидкости.
Ссылка на основную публикацию
Похожие публикации